

CryoModel: A Cryostat Thermal Performance Simulation Tool

David Perez Caparros

Cryostat Thermal Model (I)

LHC DIPOLE : STANDARD CROSS-SECTION

Cryostat Thermal Model (II)

Natural Warm-up

Mathematical Model (I)

$$\begin{split} \dot{Q}_{w,vv}(T_{vv}) &= \dot{Q}_{rad} + \dot{Q}_{conv} = \sigma \overline{A}_{vv} E_1 (T_{wall}^4 - T_{vv}^4) + h_C \overline{A}_{vv} (T_{wall} - T_{vv}) \\ \dot{Q}_{vv,s1}(T_{vv}, T_{s1}) &= \dot{Q}_{rad} = \sigma \overline{A}_{s1} E_2 (T_{vv}^4 - T_{s1}^4) \\ \dot{Q}_{s1,ts}(T_{s1}, T_{ts}) &= \dot{Q}_{vv,s1} (T_{vv}, T_{s1}) = \dot{Q}_{MLI30} \\ \dot{Q}_{ts,s2}(T_{ts}, T_{s2}) &= \dot{Q}_{rad} = \sigma \overline{A}_{s2} E_3 (T_{ts}^4 - T_{s2}^4) \\ \dot{Q}_{s2,cm}(T_{s2}, T_{cm}) &= \dot{Q}_{ts,s2} (T_{ts}, T_{s2}) = \dot{Q}_{MLI10} \end{split}$$

σ: Stefan-Boltzmann constant
T: temperature [K]
Q: heat flux [W/m]
hc: natural conv factor
E: emissivity factor

w: tunnel wall
vv: vacuum vessel
s1: MLI 30
ts: thermal shield
s2: MLI 10
cm: cold mass

Mathematical Model (II)

$$\begin{split} M_{vv}C_{p_{vv}}(T_{vv})\frac{\partial T_{vv}}{\partial t} &= \dot{Q}_{w,vv}(T_{vv}) - \dot{Q}_{vv,s1}(T_{vv},T_{s1}) \\ M_{ts}C_{p_{ts}}(T_{ts})\frac{\partial T_{ts}}{\partial t} &= \dot{Q}_{s1,ts}(T_{s1},T_{ts}) - \dot{Q}_{ts,s2}(T_{ts},T_{s2}) \\ M_{cm}C_{p_{cm}}(T_{cm})\frac{\partial T_{cm}}{\partial t} &= \dot{Q}_{s2,cm}(T_{s2},T_{cm}) \\ \dot{Q}_{vv,s1} &= \dot{Q}_{s1,ts} \\ \dot{Q}_{ts,s2} &= \dot{Q}_{s2,cm} \end{split}$$

M: mass [kg/m] w: tunnel wall Cp: specific heat [J/(kg K)] vv: vacuum vessel T: temperature [K] s1: MLI 30 Q: heat flux [W/m] ts: thermal shield s2: MLI 10 cm: cold mass

Heat Flux through MLI. Simple Model

$$\dot{q} = \frac{\alpha_s}{N_s} \frac{T_c + T_w}{2} (T_w - T_c) + \frac{\beta_s}{N_s} (T_w^4 - T_c^4)$$

N: number of reflective layers α: average thermal conductivity β: average emissivity

Model based on empirical data

LHC prototype cryostats at 10⁻⁴ Pa: - 300-80K, MLI 30, q=1.2 W/m² - 80-4.5K, MLI 10, q=0.06 W/m²

 $\alpha_{s} = 1.401 \cdot 10^{-4} [W / m^{2} K^{2}]$ $\beta_{s} = 3.741 \cdot 10^{-9} [W / m^{2} K^{4}]$

MLI layer to layer model

Set of N+1 equations
N: number of MLI layers

$$\begin{cases}
\dot{Q} = \dot{Q}rad_{1\to 0} + \dot{Q}cond_{1\to 0} + \dot{Q}res_{1\to 0} \\
\dot{Q} = \dot{Q}rad_{2\to 1} + \dot{Q}cond_{2\to 1} + \dot{Q}res_{2\to 1} \\
\dot{Q} = \dot{Q}rad_{3\to 2} + \dot{Q}cond_{3\to 2} + \dot{Q}res_{3\to 2} \\
\vdots \\
\dot{Q} = \dot{Q}rad_{N\to N-1} + \dot{Q}cond_{N\to N-1} + \dot{Q}res_{N\to N-1} \\
\dot{Q} = \dot{Q}rad_{N\to N-1} + \dot{Q}res_{N+1\to N}
\end{cases}$$

MLI layer to layer (I): Radiation

$$q_{rad} = \sigma \cdot E(\varepsilon A) \cdot (T_h^4 - T_c^4) \quad [W/m^2]$$

σ: Stefan-Boltzmann constant E(ε,A): Emissivity factor T_h: Hot boundary temperature [K] T_c: Cold boundary temperature [K]

Emissivity of MLI layer Al coating

0,5

0,4 0,3 0,2 0,1 0 0

50

100

150

T [K]

200

250

11

R R Conte

300

Berkeley He-Al

MLI layer to layer (III): Solid conduction through spacers

$$q_{cond} = \frac{k_s}{t} (T_h - T_c) \qquad [W / m^2]$$

k_s: Effective spacer thermal conductivity [W/m K]

t: Spacer thickness [m]

T_h: Hot boundary temperature [K]

T_c: Cold boundary temperature [K]

Fiberglass Spacer Effective Thermal Conductivity

MLI layer to layer model

Set of N+1 equations
N: number of MLI layers

$$\begin{cases} \dot{Q} = \dot{Q}rad_{1\to 0} + \dot{Q}cond_{1\to 0} + \dot{Q}res_{1\to 0} \\ \dot{Q} = \dot{Q}rad_{2\to 1} + \dot{Q}cond_{2\to 1} + \dot{Q}res_{2\to 1} \\ \dot{Q} = \dot{Q}rad_{3\to 2} + \dot{Q}cond_{3\to 2} + \dot{Q}res_{3\to 2} \\ \dots \\ \dot{Q} = \dot{Q}rad_{N\to N-1} + \dot{Q}cond_{N\to N-1} + \dot{Q}res_{N\to N-1} \\ \dot{Q} = \dot{Q}rad_{N\to N-1} + \dot{Q}res_{N+1\to N} \end{cases}$$

Mathematical Model

$$\begin{split} M_{vv}C_{p_{vv}}(T_{vv})\frac{\partial T_{vv}}{\partial t} &= \dot{Q}_{w,vv}(T_{vv}) - \dot{Q}_{vv,s1}(T_{vv},T_{s1}) \\ M_{ts}C_{p_{ts}}(T_{ts})\frac{\partial T_{ts}}{\partial t} &= \dot{Q}_{s1,ts}(T_{s1},T_{ts}) - \dot{Q}_{ts,s2}(T_{ts},T_{s2}) \\ M_{cm}C_{p_{cm}}(T_{cm})\frac{\partial T_{cm}}{\partial t} &= \dot{Q}_{s2,cm}(T_{s2},T_{cm}) \\ \dot{Q}_{vv,s1} &= \dot{Q}_{s1,ts} \\ \dot{Q}_{ts,s2} &= \dot{Q}_{s2,cm} \end{split}$$

M: mass [kg/m] w: tunnel wall Cp: specific heat [J/(kg K)] vv: vacuum vessel T: temperature [K] s1: MLI 30 Q: heat flux [W/m] ts: thermal shield s2: MLI 10 cm: cold mass

Matlab Application. MLIGUI (I)

0 0	MLI model	
	Geometry Hot Boundary Diameter [m]: Cold Boundary Diameter [m]:	0.88
	MLI Number of MLI layers: Spacer conductivity [W/m K]: Spacer thickness [m]: Hot Boundary emissivity: Cold Boundary emissivity: MLI film emissivity:	[10 20 30 40 50 60 70 80 9C 4.5*((T/10)^0.5)*1e-6 0.00015 6E-05*Th + 0.0118 6E-05*Tc + 0.0118 0.0035*T^0.5 ↓
Hot Boundary T=290.0 K MLI N=10 Cold Boundary T=50.0 K	Test Conditions Hot Boundary Temperature [K]: Cold Boundary Temperature [K]: Residual Gas Pressure [Pa]:	290 50 [0.1 0.01 0.001 0.0001 1e-0]
	Calcula	ate

Matlab Application. MLIGUI (II)

Temperature of MLI layers [290K - 50K]

Matlab Application. CryoModel (I)

Cryostat Thermal Performance											
File	Edit	View	Insert	Tools	Desktop	Window	Help				
File	Edit	dit View Inser		ert Tools Desk	Desktop	Window Geometry Tunnel Diame Vacuum Vess Insulation Number of lay Spacer thickn MLI shield en Use layer	Help ter [m]: sel Diameter [m]: vers MLI s1: ness MLI s1 [m]: nissivity: to layer MLI model	4 0.914 30 0.0003 0.0035*T/	Thermal Shield Dia Cold Mass Diamete Number of layers M Spacer thickness M ^0.5 ;	meter [m]: er [m]: /LI s2: /LI s2 [m]:	0.78 0.57 10 0.0003
						Spacer condu Spacer condu Materials	ictivity s1 [W/m K]: ictivity s2 [W/m K]:	4.5*((T/10	0)^0.5)*1e-6 \$ 0)^0.5)*1e-6 \$		
		4 4 	Vacuum Ve MLIs1 Thermal SH MLIs2 Cold Mass	rield		iron (1566 k 304 Stainles Helium (4 k OFCH Copp	Cold Mass g/m] ss Steel [163 kg/m] g/m] er [82.52 kg/m]	Thermal S	ihield Vacuum V	ressel 1100 Alumin [k Add F	ium ‡ g/m] Remove
Sir	nulation	Paramet	ters			Initial Values	and Conditions				
Sir G Fre Alg	n Time: Apply t quency: porithm:	ime scal	ing G	Days ÷	\$	Temperature Initial value o Initial value o Initial value o Pressure [Pa]	of Tunnel Wall [K]: f Vacuum Vessel Temj f Thermal Shield Temp f Cold Mass Temp. [K]	o. [K]: . [K]: :	300 294 65 1.9 0.0001		
Start Simulation											

Matlab Application. CryoModel (II)

 45

 40

 35

 30

 25
 LHC Estimated 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Time [Days]

Cold Mass Temperature: Estimated vs LHC data

Demo

Q&A