

LICE

HIE-ISOLDE Cryomodule Thermal Analysis – 1st part

L.Valdarno TE-MSC-CMI, CERN 16th September 2014

ATIAS

CERN Prévessin

Agenda

1	Introduction
2	Objective
3	HIE-ISOLDE: FEM Model
4	HIE-ISOLDE: Model checks
5	Thermal steady-state analysis
6	Thermal transient analysis
7	Advanced thermal analysis
8	Conclusions and next steps

Introduction

- □ High Intensity and Energy ISOLDE
- **Current state**
- **G** Future phases

Objective

- Global temperature and heat flux mapping
- Design validation
- Advanced thermal analysis

Targets:

- 1. Global temperature and heat flux mapping
- 2. Validation of the experimental tests
- 3. Simulation tool for future thermo-mechanical analysis

Outline

1	HIE-ISOLDE: cryomodule
2	Analytical heat loads estimation
3	FEM model
4	Model checks
5	Thermal steady-state analysis
6	Conclusions and next steps

HIE-ISOLDE: Main components

Vacuum vessel

Interfaces

Top plate

- Seal interface
- Thermal shield
 - Cryogenics circuit

Helium reservoir

- Cryogenics piping
- Cryogenics supply

Supporting frame assembly

- Actively cooled frame
- Suspension rods
- Adjustment mechanisms

5 QWR cavities

- RF supply and pick-up
- Tuner and coupler motors

1 solenoid

- Protection system
- Current leads

HIE-ISOLDE: Procedure

1. Initial status

300K structures

2. Thermal shield cool down

- 300K-75K
- 13 bar

3. Reservoir + frame cool down

- 300K-75K
- 2.5 bar

4. Reservoir + frame cool down

- **75K-4.5K**
- 2.5 bar

5. Global cool down

- Thermal shield circuit : 13barG, 55-75K
- Cold mass circuits: 1.3 barG, 4.5K

HIE-ISOLDE: 55K-70K GHe circuit

Characteristics:

- 55K-70K gaseous helium
- 13 bar nominal

HIE-ISOLDE: 4.5K LHe-GHe circuit

Characteristics:

- 2.5 bar transient
- 1.3 bar nominal

Outline

1	HIE-ISOLDE: cryomodule
2	Analytical heat loads estimation
3	FEM model
4	Model checks
5	Thermal steady-state analysis
6	Conclusions and next steps

Analytical heat loads estimation

$$\dot{q} = -\frac{A}{L} \int_{Tcold}^{Twarm} k(T) dT$$

□ radiation

$$q_{w-c} = \frac{\sigma \left(T_{warm}^4 - T_{cold}^4 \right)}{\frac{1 - \varepsilon_w}{\varepsilon_w A_w} + \frac{1}{A_w F} + \frac{1 - \varepsilon_c}{\varepsilon_c A_c}}$$

convection

 $Q = hA_{tr}\Delta T$ h = Nu.k/d $Nu = \alpha Re^{0.8} Pr^{n}$ $Re = \frac{4Q_m}{\pi d\mu}$ $Pr = \frac{Cp.\mu}{k}$

HIE-ISOLDE: 55K-70K GHe circuit

Heat loads estimation of the 55K-70K GHe circuit

Heat	Source	Value [W]	With margin [W]
Radiation	Radiative heat exchange VV vs. TS	190	350
	Thermal shield supports	10	20
	Reservoir thermalization	58	58
	Tie-rods thermalization	9	9
	RF cables thermalization	15	25
Conduction	RF pick-up	15	15
	Tuner-coupler rods	4	4
	GHE Bayonets (CM side)	3	6
	Solenoid adjusting rods	1	1
	Instrumentation	7	10
Dynamic	RF cables thermalization	52	52
tot.		364	550

HIE-ISOLDE: 4.5K LHe-GHe circuit

Heat loads estimation of the 4.5K LHe-GHe circuit

Heat	Source	Value [W]	With margin
	Radiative heat exchange TS vs. CM	0.57	0.81
Dediation	Beam port openings	0.83	0.83
Radiation	Viewports openings	0.2	0.3
	Gap around the TS lid	0.3	0.45
	Reservoir thermalization	6.1	6.1
	Tie-rods thermalization	0.2	0.2
	RF supply cables	1	2.5
	RF pick-up cables	1	2.5
Conduction	Tuner-coupler rods	0.1	0.1
	Bayonets (CM side)	6.1	12.2
	Solenoid adjusting rods	0.03	0.03
	Instrumentation low current	0.4	0.4
	Instrumentation heaters	1.3	1.3
Dunamic	Coupler	2	5
Dynamic	Cavities	50	50
tot.		70	82

+ liquefaction load

Outline

1	HIE-ISOLDE: cryomodule
2	Analytical heat loads estimation
3	FEM model
4	Model checks
5	Thermal steady-state analysis
6	Conclusions and next steps

FEM Model

Complexity of geometry

- Number of components
- Connections

Complexity of thermal phenomena

- Wide temperature range (4.5K-300K)
- Internal forced helium flow
- Radiation

Targets of FEM analysis:

- 1. Global temperature and heat flux mapping
- 2. Validation of the experimental tests
- 3. Simulation tool for future thermo-mechanical analysis

- Vacuum vessel
- Top plate
- Thermal shield
 - Cryogenics circuit
- Supporting frame assembly
 - Actively cooled frame
 - Suspension rods
- Helium reservoir
 - Cryogenics piping
- 5 cavities
- 1 solenoid

Vacuum vessel: -15 mm (40mm) thick plates -316L polished -4.5 T welded assembly

- Vacuum vessel
- Top plate
- Thermal shield
 - Cryogenics circuit
- Supporting frame assembly
 - Actively cooled frame
 - Suspension rods
- Helium reservoir
 - Cryogenics piping
- □ 5 cavities
- 1 solenoid

-300 kg bolted assembly -2 mm thick Cu Ni-plated

Thermal Shield : -2.2m x 1.8m x 0.9m

-Piping : GHe 70K, 13 bara -No porosities after brazing

- Vacuum vessel
- Top plate
- Thermal shield
 - Cryogenics circuit
- Supporting frame assembly
 - Actively cooled frame
 - Suspension rods
- Helium reservoir
 - Cryogenics piping
- □ 5 cavities
- 1 solenoid

Supporting frame : -2.1m x 0.4m x 0.4m -316L, electro-polished -130 kg welded assembly -Piping : LHe 4.5K, 4.5 bara

- Vacuum vessel
- Top plate
- Thermal shield
 - Cryogenics circuit
- Supporting frame assembly
 - Actively cooled frame
 - Suspension rods
- □ Helium reservoir
 - Cryogenics piping
- □ 5 cavities
- 1 solenoid

19

- Vacuum vessel
- Top plate
- Thermal shield
 - Cryogenics circuit
- Supporting frame assembly
 - Actively cooled frame
 - Suspension rods
- Helium reservoir
 - Cryogenics piping
- **5** cavities
- **1** solenoid

- Vacuum vessel
- Top plate
- **Thermal shield**
 - Cryogenics circuit н.
- □ Supporting frame assembly
 - Actively cooled frame
 - Suspension rods

Helium reservoir

- Cryogenics piping
- **5** cavities
- 1 solenoid

Outline

1	HIE-ISOLDE: cryomodule
2	Analytical heat loads estimation
3	FEM model
4	Model checks
4 5	Model checks Thermal steady-state analysis
4 5 6	Model checks Thermal steady-state analysis Conclusions and next steps

Finite Element Model (source ESA/ECSS standards):

- Geometry
- Mesh
- Loads
- Rigid body motion

ER

Finite Element Model (source ESA/ECSS standards):

Model geometry

- ✓ Mass (components, total)
- ✓ Centre of gravity (with common SoR)
- ✓ Moments of inertia
- ✓ Contacts (around n. 300)

Tra	nslational mas	3	1	Coupled trans	lational/rotat:	ional mass
0.29976	0.0000	0.0000	i.	0.0000	-300.12	13.345
0.0000	0.29976	0.0000	- i	300.12	0.0000	0.55811
0.0000	0.0000	0.29976	1	-13.345	-0.55811	0.0000
			• •	Rotatio	nal mass (iner	tia)
			- i -	0.46185E+06	176.57	1278.1
			- i	176.57	0.58399E+06	-12322.
			1	1278.1	-12322.	0.19057E+
The mass prin	29976 cipal axes coi	ncide with the	gloł	oal Cartesian a	xes	
The mass prine	29976 cipal axes coi	ncide with the	gloł	oal Cartesian a	xes	
The mass prin CENTER OF MASS	29976 cipal axes coi (X,Y,Z)= 1.	ncide with the 8619 -44.	gloù .520	oal Cartesian a -1001.2	xes	
The mass prin CENTER OF MASS	29976 cipal axes coi (X,Y,Z)= 1. BOUT CENTER OF	ncide with the 8619 -44. MASS	gloù .520	oal Cartesian a -1001.2	xes	
CENTER OF MASS TOTAL INERTIA AI 0.16078E+0	29976 cipal axes coi (X,Y,Z)= 1. BOUT CENTER OF 6 151.72	ncide with the 8619 -44. MASS 719.29	gloł .520	oal Cartesian a -1001.2	xes	
The mass prin CENTER OF MASS TOTAL INERTIA AI 0.16078E+0 151.72	29976 cipal axes coi: (X,Y,Z) = 1. BOUT CENTER OF 6 151.72 0.28351E+0	ncide with the 8619 -44. MASS 719.29 6 1039.4	gloù .520	oal Cartesian a -1001.2	xes	
The mass prin CENTER OF MASS TOTAL INERTIA AI 0.16078E+0 151.72 719.29	29976 cipal axes coi (X,Y,Z) = 1. BOUT CENTER OF 6 151.72 0.28351E+0 1039.4	ncide with the 8619 -44. MASS 719.29 6 1039.4 0.18998E+06	glok .520	oal Cartesian a -1001.2	xes	
The mass prin CENTER OF MASS TOTAL INERTIA AI 0.16078E+0 151.72 719.29	29976 cipal axes coi (X,Y,Z) = 1. BOUT CENTER OF 6 151.72 0.28351E+0 1039.4	ncide with the 8619 -44. MASS 719.29 6 1039.4 0.18998E+06	gloù .520	al Cartesian a -1001.2	xes	
The mass prin CENTER OF MASS TOTAL INERTIA AI 0.16078E+0 151.72 719.29 PRINCIPAL INERT	29976 cipal axes coi (X,Y,Z)= 1. BOUT CENTER OF 6 151.72 0.28351E+0 1039.4 IAS = 0.1607	ncide with the 8619 -44. MASS 719.29 6 1039.4 0.18998E+06 6E+06 0.28353	glok .520 5 3E+0	0al Cartesian a -1001.2 5 0.18998E+06	xes	
The mass prin CENTER OF MASS TOTAL INERTIA AI 0.16078E+0. 151.72 719.29 PRINCIPAL INERT: ORIENTATION VEC	29976 cipal axes coi (X,Y,Z) = 1. BOUT CENTER OF 6 151.72 0.28351E+0 1039.4 IAS = 0.1607 TORS OF THE IN	ncide with the 8619 -44. MASS 719.29 6 1039.4 0.18998E+06 6E+06 0.28353 ERTIA PRINCIPAI	glok 520 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	oal Cartesian a -1001.2 5 0.18998E+06 25 IN GLOBAL CA	xes RTESIAN	

Bounding Box			
Length X	2188.4 mm		
Length Y	886. mm		
Length Z	1991. mm		
	Properties		
Volume	3.6088e+007 mm ^s		
Mass	299.53 kg		

CERN

Finite Element Model (source ESA/ECSS standards):

Element topology

- <u>Aspect ratio</u>: max. edge length /min edge length;
- Jacobian ratio: measure of the deviation of a given element from an ideally shaped element;
- ✓ <u>Warping factor</u>: warp angle is the out of plane angle;
- ✓ <u>Skewness</u>: minimum angle between two lines joining opposite midsides of the element;
- ✓ <u>Convergence</u> of mesh refinement;

Nodes: 283,005

Elements: 113,146

	min	max	average	st.dev.	ideal
Aspect ratio	1.03	25.97	1.45	0.6	1
Jacobian ratio	0.45	49.81	1.08	0.4	1
Warping factor	0	1.44E-14	3.43E-15	0	0
Skewness	3.91E-03	0.99	0.21	0.1	0

Finite Element Model (source ESA/ECSS standards)

Static analysis

- ✓ Unit load check
- ✓ Load resultants
- ✓ Residual load vector
- ✓ No internal mechanism

Gamma Stress free thermo-elastic deformation

✓ Uniform temperature decrease

26

Finite Element Model (source ESA/ECSS standards):

Static analysis

- ✓ Unit load check
- ✓ Load resultants
- ✓ Residual load vector
- ✓ No internal mechanism

G Stress free thermo-elastic deformation

✓ Uniform temperature decrease

10e-4

92

Outline

1	HIE-ISOLDE: cryomodule
2	Analytical heat loads estimation
3	FEM model
4	Model checks
5	Thermal steady-state analysis

Thermal steady-state analysis (1/2)

a radiation a conduction adynamic

- Emissivity
 - Vacuum vessel: 0.2
 - Thermal shield: [0.033,0.066]

$$\dot{q}_{1\to 2} = \dot{q}_1 = -\dot{q}_2 = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1 - \varepsilon_1}{\varepsilon_1 A_1} + \frac{1}{A_1 F_{12}} + \frac{1 - \varepsilon_2}{\varepsilon_2 A_2}}$$

emissivity of TS

Thermal steady-state analysis (2/2)

OB: Temperature mapping inside the CM

Thermalisation (1/2)

OB: determine the efficiency of the two copper stripes on cooling down of the oblique rod supporting the frame. The results are compared to an alternative option with just a single thermalisation.

Hp1: Isotropic coefficient of thermal expansion function of temperature

Thermalisation (2/2)

CERN

- □ Single thermalisation has an important effect only in case of pure conduction heat transfer increasing the time to reach T(max)<100K from 50 to 65 hours;
- □ In the conduction + radiation model (realistic case) this effect is less important due to the influence of the radiation;

With radiation

	Two thermalisations	One thermalisation
Only conduction	50 h	65 h
Conduction + radiation	21 h	23 h

Outline

6	Conclusions and next steps
5	Thermal steady-state analysis
4	Model checks
3	FEM model
2	Analytical heat loads estimation
1	HIE-ISOLDE: cryomodule

Conclusions

□ Thermal network;

- General analytical estimation of heat loads inside the cryomodule updated version;
- □ FEM model validated with the ECSS standards;
- Global thermal steady state analysis;

Next:

- Global radiation analysis need for emissivity values in cryogenic conditions;
- □ Increase complexity of geometry;

... in the next episode

- Thermal transient analysis 1.
- Advanced thermal analysis: 2.
 - Frame support and cryogenic circuit;

197.78 172.22 146.67 121.11

- Omega plates;
- Vacuum Vessel cleaning;
- RF cable;
- Solenoid splices.

- [1] Y. Leclercq, "Heat load estimation for the HIE-ISOLDE cryomodule," CERN, 2013-03-12.
- [2] N. Delruelle and Y. Leclercq, "Cryogenic procedures, layout and operation of the HIE-ISOLDE cryomodule," CERN, 2013-07-01.
- [3] D. Ramos, "Radiation heat exchange in the HIE-ISOLDE cryomodule," CERN, 2013-08-01.
- [4] L. Williams, "Cryostat for HIE-ISOLDE high energy cryomodule," CERN, 2010-06-17.

Instrumentation

